N-acetyl-beta-glucosaminidase accounts for differences in glycosylation of influenza virus hemagglutinin expressed in insect cells from a baculovirus vector.
نویسندگان
چکیده
The hemagglutinin of fowl plague virus has been expressed in Spodoptera frugiperda (Sf9) cells and in Estigmene acrea cells by using a baculovirus vector. Structural analysis revealed that the endo-H-resistant N-glycans of HA from Sf9 cells were predominantly trimannosyl core oligosaccharides, whereas in E. acrea cells most of these cores were elongated by at least one terminal N-acetylglucosamine residue. To understand the difference in carbohydrate structures, enzymes involved in N-glycan processing have been analyzed. The results revealed that the different glycosylation patterns observed are due to an N-acetyl-beta-glucosaminidase activity that was found in Sf9 cells but not in E. acrea cells. This enzyme specifically used the GlcNAcMan(3)GlcNAc(2) oligosaccharide as a substrate. When N-acetyl-beta-glucosaminidase or alpha-mannosidase II was inhibited by specific inhibitors, the amount of terminal N-acetylglucosamine in hemagglutinin from Sf9 cells was significantly enhanced. These results demonstrate that N glycosylation in both cell lines follows the classical pathway up to the stage of GlcNAcMan(3)GlcNAc(2) oligosaccharide side chains. Whereas these structures are the end product in E. acrea cells, they are degraded in Sf9 cells to Man(3)GlcNAc(2) cores by N-acetyl-beta-glucosaminidase.
منابع مشابه
Baculoviral Expression of Influenza A Virus (H1N1 New Caledonia) Neuraminidase in Insect Cells
Background and Aims: Each year, the influenza virus causes moderate to severe infections with a high prevalence throughout the world. Accordingly, an influenza vaccine that ensures protection with only a single dose would be a much more cost effective approach to influenza prophylaxis. Generation of Influenza non-replicating virus-like particles (VLP) in baculoviral expression system is an attr...
متن کاملConstruction of a recombinant bacmid DNA containing influenza A virus hemagglutinin gene using a site-specific transposition mechanism
Introduction: In recent years, influenza viruses have caused moderate to severe infections all around the world while so far there is no influenza vaccine that can protect people with only one dose of injection. In this regard, producing a universal vaccine based on virus-like-particles (VLP) could be an ideal approach. Methods: In this study, the full-length ORF of influenza hemagglutini...
متن کاملBacillus subtilis as a Host for Recombinant Hemagglutinin Production of the Influenza A (H5N1) Virus
Abstract Background and Aims: Influenza A(H5N1) viruses circulating in animals might evolve and acquire the ability to spread from human to human and thus start a pandemic. Hemagglutinin (HA) has been shown to play a major role in binding of influenza virus to its target cell and the main neutralizing antibody responses elicit against this region. Recent studies have shown that...
متن کاملConstruction of a Recombinant Bacmid DNA to Express Influenza Virus Matrix Protein1 (M1) in Insect Cell Line
Background and Aims: Virus-like particles (VLPs) have been suggested to be a promising recombinant vaccine approach. Several studies have reported that the influenza VLPs produced in insect cells is an effective vaccine candidate. Due to crucial role of matrix M1 protein in assembly and budding of Influenza particles, in all VLPs structures, M1 protein have been considered as a main component. ...
متن کاملCloning and Expression of Simian Rotavirus Spike Protein (VP4) in Insect Cells by Baculovirus Expression System
Background: VP4 protein is as spikes on rotavirus outer capsid shell which is responsible for virus attachment to the host. VP4 induces production of neutralizing antibodies which could be used for serotyping of different isolates. Methods: Simian rotavirus SA11 gene 4 cDNA was cloned into a cloning plasmid pDONRTM by recombination reaction using clonase II enzyme mix. The resulting clone was c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 70 6 شماره
صفحات -
تاریخ انتشار 1996